Exploring Vertical Asymptotes	Name
Student Activity	Class
Open the TI-Nspire document <i>Exploring_Vertical_Asymptotes</i>	1.1 1.2 2.1 ▶ Exploring_Vtes ▼ Exploring Vertical Asymptotes
Given the equation of a rational function, will you always be able to determine the domain? In this activity, you will explore vertical asymptotes and removable discontinuities.	Use the sliders to change the values of a, b, and c.

Move to page 1.2.

- 1. Use \blacktriangle and ∇ to change the value of *a*. Describe how the graph changes.
- 2. Use \blacktriangle and ∇ to change the value of *b*. Describe how the graph changes.
- 3. What do the values of *a* and *b* represent in the function?
- 4. What are the equations of the vertical asymptotes?
- 5. State the domain of the function in terms of *a*, *b*, and *c*.
- 6. Use \blacktriangle and ∇ to change the value of *c*. How does changing *c* affect the domain?
- 7. Describe how you could find the vertical asymptotes for any rational function with a constant numerator.

Move to page 2.1.

8. Use \blacktriangle and \triangledown to set a = 2 and b = -1, and then change the value of c. For which values of c are there no asymptotes? Explain why there are no asymptotes for these values of c.

į,	Exploring Vertical Asymptotes	
	Student Activity	

Name	
Class	

9. The "hole" in the graph is called a removable discontinuity. Explain why the hole exists and how you might remove it by modifying the function definition.

Move to page 2.2.

10. Answer the question on Page 2.2.

Describe the graph of the function $f(x) = \frac{(x+6)(x-3)}{x+6}$.

Move to page 3.1.

- 11. Use \blacktriangle and ∇ to set b = -1 and c = 4. Then use \blacktriangle and ∇ to change the value of a.
 - a. Describe how the graph changes as the value of *a* changes.
 - b. What is the domain of the function in terms of *a*, *b*, and *c*?
 - c. For which values of a is there only one asymptote? Describe the graph at these values.
 - d. Explain algebraically why the graph looks as it does at these points.
- 12. Describe how the domain would change if you changed the values of *b* and *c*.

Move to page 3.2.

13. Answer the question on Page 3.2.

Describe the graph of the function $f(x) = \frac{x-3}{(x+6)(x-3)}$.

Move to page 4.1.

14. Answer the questions on Pages 4.2 and 4.3.Holes were discussed in question 9. While manipulating the sliders for a and b on Page 4.1, what would a and b have to be for *f1(x)* to have a hole? To have a vertical asymptote?