

Topic 1.6: Polynomial Functions and End Behavior

Practice Problem 1

The function h, is given by the function $h(x) = 5x^5 - 2x^3 + 3x^2 - 1$. Which of the following would correctly describe the end behavior of h as the input values decrease without bound?

- (a) $\lim_{x\to\infty} f(x) = -\infty$
- (b) $\lim_{x \to -\infty} f(x) = -\infty$
- (c) $\lim_{x \to \infty} f(x) = \infty$
- (d) $\lim_{x \to -\infty} f(x) = \infty$

Practice Problem 2

For the polynomial function f, $\lim_{x\to\infty} f(x) = -\infty$, which of the following expressions could define f(x)?

- (a) $-7x + 6x^8$
- (b) $-7x^3 6x^8$
- (c) $200x + \frac{x^3}{3}$
- (d) $-x^4 + 6x^5$

Practice Problem 1 Solution:

(b)
$$\lim_{x\to-\infty}f(x)=-\infty$$

Since the polynomial has an odd degree and the leading coefficient is positive, (b) is the answer.

Practice Problem 2 Solution:

(b)
$$-7x^3 - 6x^8$$

Since the degree of the expression is even (8) and the leading coefficient is negative (-6), the end behavior as x increases without bound is $-\infty$, therefore (b) is the correct answer.

**Note: This activity has been developed independently by Texas Instruments. AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Policies subject to change. <u>Visit www.collegeboard.org.</u>