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Math Objectives 

 Students will be able to describe the characteristics of the graphs 

of equations of the form 
x

a

n


y

b

n

1
 
for various values of n .  

 Students will be able to describe the characteristics of the graphs 

of equations of the form (x  a)2  y2  (x  a)2  y2  b2

 

when a = 4 and b varies. 

 Students will use appropriate tools strategically (CCSS 

Mathematical Practice). 

 Students will reason abstractly and quantitatively (CCSS 

Mathematical Practice). 

 

Vocabulary 

 ellipse 

 superellipse 

 Cassini oval 

 

About the Lesson 

 This lesson involves exploring the curves that result from varying 

the defining conditions of an ellipse. 

 As a result, students will: 

 Analyze the properties of the graphs and equations of 

superellipses and Cassini ovals. 

 Analyze the derivations of the parametric representation of a 

superellipse and the polar representation of a Cassini oval. 

 

TI-Nspire™ Navigator™ System 

 Transfer a File. 

 Use Screen Capture to monitor student progress. 

 

 

TI-Nspire™ Technology Skills:  

 Download a TI-Nspire 

document 

 Open a document 

 Move between pages 

 Grab and drag a point 

 

Tech Tips:  

 Make sure the font size on 

your TI-Nspire handhelds is 

set to Medium.  

 You can hide the function 

entry line by pressing / 
G. 

 

Lesson Files: 
Student Activity 

Elliptic_Variations_Student.pdf 

Elliptic_Variations_Student.doc 

TI-Nspire document  
Elliptic_Variations.tns 

 

Visit www.mathnspired.com for 

lesson updates and tech tip 

videos. 

http://www.mathnspired.com/
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Discussion Points and Possible Answers 

 

 

 

 

Problem 1: Superellipses 

Move to page 1.2. 

 

The curves described by the equation
x

a

n


y

b

n

 1, where n  is a 

positive rational number, are called superellipses. 

To conveniently explore fractional values of n , we set n  = 
k

6
 and 

consider the values of n  from 
1

6
 to 4, or equivalently, the values of 

k  from 1 to 24. 

 

 

Piet Hein popularized these curves around 1960 for values of n  > 2 [especially n  = 2.5]. The curves 

for these values of n are “rounded rectangles” that have been used in the design of a town “square” in 

Sweden to improve traffic flow and in the design of tabletops and other furniture.  

 

Move to page 1.3. 

 

We will use parametric equations to produce a graph of these 

superellipses. The derivation of these equations is shown later 

in this section. 

 

Move to page 1.4. 

 

Use the a -clicker and b -clicker to set the values of a  and b  to a  = 

6 and b  = 4 Using the k -clicker, scroll through the values of k  = 1 

to 24. As you answer the questions below, you might want to 

experiment with other values of a  and b  to confirm your responses.  

1. Which value of k  generates the graph of a standard ellipse? 

 

Answer: k = 12 since 12/6 = 2. 
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2.  Which value of k  generates the graph of a polygon, instead of a curve? Identify the type of polygon. 

 

Answer: k = 6 since 6/6 = 1. The graph is a rhombus with sides of length a2  b2
that are 

contained in the four lines whose equations are 
x

a

y

b
1  

 

3. Let k* denote the value of k in your answer to Question #2. Describe the graphs for 1 ≤ k ≤ k*.  
 
 

Sample Answer. For 1 ≤ k ≤ 5, the graphs resemble 4-pointed stars whose sides curve inward.  
 

4.  Use the a -clicker and b -clicker to set the values of a  and b  to a  = 6 and b  = 6 Using the k -

clicker, scroll through the values of k  = 1 to 24. Describe the curve when a  =b .  

 

Answer: The sequence of graphs from k = 1 to k = 24 is similar to the set of graphs of the 

superellipses. The graph is a 4-pointed star whose sides curve inward for 1 ≤ k ≤ 5; a square for  

k = 6; an “oval” approaching a circle for 7 ≤ k ≤ 11; a circle for k = 12, and increasingly large “circular 

ovals” eventually approaching a square for k > 12. Such graphs are called supercircles.  

 

5.  What do you predict will happen to the graph of 
x

a

n


y

b

n

 1  as n  becomes very large? Why? 

 

Sample Answer: As n  gets very large in 
x

a

n


y

b

n

1
 

the four “corner points” of the graph 

approach, but do not reach, the points (a,b) so the graph approaches a rectangle of area 

2a 2b  4ab . 
 

6.  What do you predict will happen to the graph of 
x

a

n


y

b

n

 1  as n  becomes very small? Why? 

 

Sample Answer: As n  approaches 0, either 
x

a
 0  or 

y

b
 0 , but not both, since w

0
 1  for 

any non-zero value of w. Thus the graph approaches the two coordinate axes without the origin – the 

set of points ( x ,0) and  (0, y ) omitting (0,0). 

 

TI-Nspire Navigator Opportunity: Screen Capture 

See Note 1 at the end of this lesson. 
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Recall that the parametric equations for the standard ellipse are x  a cos(t)  and y  b sin(t)  for 

0  t  2 . 

 

To modify these equations for a superellipse, we have 
x  a  cos(t)

2 /n

y  b  sin(t)
2 /n









.

 

These equations are valid because 
x

a

n


y

b

n

 cos(t)
2/n 

n

 sin(t)
2/n 

n

 

= (cos(t))2  (sin(t))2 1. 

 

The difficulty with using these equations is that there are four of them. We would need to draw four 

different curves corresponding to the four possible combinations of + (plus) and - (minus). Fortunately, 

we can incorporate the signum function, sign(x) , into these equations to combine all of them into one 

equation. The signum function is defined by 
 

sign(x) 

1

0

1

for x  0

for x  0

for x  0









 
Note: On the calculator, sign(0)  0 . This anomaly does not affect the graphs in this problem. 

 

The parametric equations for a superellipse become 

   
x  a  cos(t)

2/n
 sign(cos(t))

y  b  sin(t)
2/n

 sign(sin(t))









 for 0 ≤ t  ≤ 2π. 

 

7.  Explain carefully how these equations determine the set of points on the graph in the second 

quadrant when 


2
 x   . 

 

Sample Answer: For 


2
 x  , sign(cos(t))  1and sign(sin(t)) 1 . Thus x  0  and y  0 , 

so that (x,y) is in Quadrant II.  

 

Teacher Tip: (1) You can omit this derivation and Question #7 if time is 

short. (2) See the activity: Parametric Equations for Conic Sections. 
 

Extension 

 Design an item using one or more supercircles or superellipses. 
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Problem 2: Cassini Ovals 

Move to page 2.1. 

 

A Cassini oval is the locus of points in the plane whose distances to 

two fixed points have a constant product. Giovanni Domenico Cassini 

developed this set of curves in 1680 because he believed that the 

motion of the Earth and Sun followed the path of a Cassini oval. 
 
In other words, a Cassini oval is the graph of the equation 

(x  a)2  y2  (x  a)2  y2  b2
 for various values of a  and 

b . The fixed points are (a ,0) and ( a ,0), and the distance is b2
. In 

this activity, we consider the case when a = 4.  

 

 

Move to page 2.2. 

 

We will use polar equations to produce graphs of Cassini ovals. The 

derivation of these equations is shown later in this section. 

 

 

Move to page 2.3. 

 

Set the value of the b -clicker to b = 1.6. Scroll through the values for 

b  = 1.6 down to b  = 1.0.  

8.  Describe how the curve changes for values of b  between 1.6 

and 1.0. 
 

Sample Answer: For b  = 1.6 (and greater) the curve is “ellipse-

like”. As b  gets closer to 1, the curve becomes concave and 

resembles a “dog-bone”. When b  = 1, the curve is a “figure-8” 

called a lemniscate. 
 

 

9.  What do you predict will happen to the curve as b  becomes very large? Why? 

 

Sample Answer: The curve becomes an arbitrarily large oval. The product of distances can be 

arbitrarily large so the distance from a given point in the plane to each of the fixed points (-4,0) and 

(4,0) can be arbitrarily large. 
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Move to page 2.4. 

 

Set the value of the c -clicker to c  = 0.95. Scroll through the values 

for c  = 0.95 down to c  = 0.5.  

Note:  Because of an anomaly in the way the calculator draws such 

graphs, the graphs of the ovals appear to be open, or 

disconnected, but, in fact, they are closed, connected graphs. 

10.  Describe how the curve changes for values of c  between 0.95 

and 0.5. 

 

Sample Answer: The curve consists of two loops that get smaller 

as the value of b decreases. 

 

 

11.  What do you predict will happen to the curve as c  becomes very small? 

 

Sample Answer: The curve approaches the two points (-4,0) and (4,0). If the product of the 

distances from a point to the two fixed points is 0, (x  a)2  y2  (x  a)2  y2  0 , then one of 

those distances must be 0. Such a distance is 0 only when the ordered pair corresponds to one of 

the fixed points.
 
 

 

To derive the general polar equations of (x  a)2  y2  (x  a)2  y2  b2
, we start by letting 

x  rcos  and y  rsin . Then  

 

(1) [(rcos  a)2  (rsin  a)2 ] [(rcos  a)2  (rsin  a)2 ] b4
  

(2) r
4[cos4  sin4  2sin2 cos2] 2a2r2[cos2  sin2] a4  b4

=  

(3) r4  2a2r2 cos2  a4  b4
 

 

Solving for r2
 and then r  gives 

(4) r2  a2 cos2  a4 cos2 2  a4  b4
 or 

(5) r2  a2 cos2 
b

a








4

 sin2 2












 so that 

(6) r  a cos2 
b

a








4

 sin2 2 . 
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12. Explain how to go from step (2) to step (3) and from step (4) to step (5) in the argument above.  

 

Sample Answer: Use trig identities: 

step (2) to step (3) : [cos4  sin4  2sin2 cos2] [cos2  sin2]2 12 1; 

[cos2  sin2] cos2 ;  

step (4) to step(5): a4 cos2 2  a4  b4  b4  a4 (1 cos2 2)  a2 b

a








4

 sin2 2  

 

Teacher Tip: (1) You can omit this derivation and Question #12 if time is 

short. (2) See the activity: Polar Conics. 
 

Extension 

 Research lemniscates and other well-known polar curves. 

 

 

Wrap Up 

Upon completion of the lesson, the teacher should ensure that students are able to understand: 

 How to analyze properties of superellipses and Cassini ovals. 

 How to think about the extreme cases of a situation, e.g. when the values of the parameters are 

very large or very small.  

 

TI-Nspire Navigator 

Note 1 

Name of Feature: Screen Capture 

Use Screen Capture to monitor and discuss the choices that students make for the values of a,b, and k  

and how they reach their answers – especially to Questions 5 and 6. 


